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We study a nonrelativistic quantum-field-theory model of a many-fermion system on a small cylindrical
surface. An attractive contact effective two-body interaction is assumed to permit binding of fermions on the
surface. We treat the many-fermion system within mean-field thermodynamics. A self-consistent Hartree-Fock
calculation is performed and the total energy, pressure, and chemical potential are investigated in a thermody-
namically consistent way. The model is applied to study the electronic properties of metallic single-walled
nanotubes �SWNTs�. We derive an analytical relation for the single-particle energy separation between two
consecutive spikes provoked by Van Hove singularities in the density of states. We also found that the effective
electron-electron interaction is necessary to reproduce the experimental fluctuation of the work function as a
function of the diameter of SWNTs. The experimental distribution of the work functions with radius presents
a nontrivial left-right asymmetry around the peak value that is reproduced by the model. Also, for SWNTs with
radius smaller than 2 Å, the model gives a work function that increases linearly with 1 /R.
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I. INTRODUCTION

Carbon nanotubes �CNTs� are new tools for practical ap-
plications of quantum properties in the nanoworld. The inter-
est of using CNTs in nanodevices, particularly in optoelec-
tronics, micromechanics, molecular biology, and thin films,
is in part motivated by the intense research of such systems
under multiple and different conditions.1 For example, CNTs
can be used as gas sensors. Geometric effects are important
for the absorption of gases by nanotube bundles as the gas
can be absorbed in the interstitial site between nanotubes, in
the external groove site, and in the external bundle surface.2

In particular, the energy released by the atoms captured by
the bundle or their binding depends on the geometry, e.g.,
when an atom is constrained to move on the nanotube sur-
face of radius of few angstroms, its cohesion is enhanced as
has been shown in Ref. 3.

Cylindrical geometry of nanotubes gives unique proper-
ties to an interacting quantum many-body system constrained
its surface. In the case of neutral atoms adsorbed on the
surface or even electrons, the knowledge of their thermody-
namic properties is of current interest. Such a study, in the
case of free electrons in confined space, with different kind
of geometries, has already been performed.4 In this case, the
electrons form a free many-fermion system on the nanotube
surface which characterizes a metallic behavior of the sys-
tem. This indeed is possible, as pointed out by Baughman et
al.5 that single-walled nanotubes �SWNTs�, consisting of a
single graphite sheet seamlessly wrapped into a cylindrical
tube, may be either metallic or semiconducting, depending
on the sheet direction about which the graphite sheet is rolled
to form a nanotube cylinder. This fascinating subject is theo-
retically studied by tight-binding models and first-principles
calculations �see, e.g., review in Ref. 6�. However, if one
aims to study coherent phenomena, e.g., superconductivity,
the interaction between weakly localized electrons by either
the Coulomb force or through the carbon lattice �both sum-
marized in an effective potential� has to be considered in the

description of the many-body system. Indeed metallic single-
walled nanotubes are known for a long time and experimen-
tally observed.7 They can also show up as long ballistic
conductors.8

Therefore, it seems necessary to face the difficult problem
of calculating the contribution of an effective electron-
electron interaction to the electronic properties of the weakly
localized electrons, as they correspond to the charge carriers
on the cylindrical surface. The interplay of geometry and
interaction should provide unique properties to the many-
electron system on the CNT surface. For example, one of
these is the measured current saturation for single9 and mul-
tiwalled CNTs.10

In this work we investigate the effect of the pairwise in-
teraction in the single-particle properties of nonrelativistic
many-fermion system with a constrained cylindrical geom-
etry. This work can be separated in two parts. The first is the
two-dimensional interacting N-fermion quantum-mechanical
problem, formulated as nonrelativistic quantum-field-theory
model on a cylindrical surface with a pairwise interaction.
The properties of the ground state of the system of N fermi-
ons are solved in the Hartree-Fock �HF� approximation. The
thermodynamical equations of state �EOSs� at zero tempera-
ture are derived analytically and the quantum-size effects
conceptually discussed and illustrated. At least from our
knowledge such a study has not been presented before. The
second issue is whether such a model can be used to inves-
tigate the properties of weakly localized electrons on a nano-
tube surface.

As a simple step in the ambitious program to study CNT
electronic properties, we will address the second issue with a
nonrelativistic quantum field model of the many-fermion
system with an effective local two-body interaction depend-
ing on strength �. The tubes are assumed to be neutral,
hence, the positive nucleus charge density is equal in mag-
nitude to the electron charge density, and thus, they do not
contribute to the electron energy remaining the effective two-
electron interaction as the dominant effect for the electron
binding. The attractive effective interaction mimics the im-
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portant physics from the atom-electron and electron-electron
interaction within the many-body system �including, e.g.,
electron-phonon interactions�. Nevertheless, it should reflect
the main character that the electrons are bound on the sur-
face, i.e., a net attraction on the surface. The chosen two-
carrier interaction, for simplicity, is a point-coupling poten-
tial, turning out to exhibit a linear surface density
dependence in the single-particle energy. In that respect the
Hartree-Fock approximation of the single-particle energy of
the many-electron system with the point-coupling interaction
can be compared to the first-order contribution of the surface
density in a density-functional theory.11 In particular the
work function �WF� within density-functional theory �DFT�
is the magnitude of the single-particle energy of the highest
occupied level in respect to the vacuum �see Ref. 12�.

The model is parametrized to account for the experimen-
tal work function of a graphene sheet �see Ref. 13�. In prin-
ciple, such a parametrization becomes ambiguous since a
family of interaction strength parameters ��� and Fermi en-
ergies �EF� is possible to reproduce the graphene work func-
tion. However, recent experimental data of the work function
for 93 nanotubes widely distributed in a range of radius be-
tween 5 and 15 Å revealed a small radial dependence.14 This
experimental finding allowed us to choose EF that fits the
small radial dependence of the experimental work function.
The model predicts an oscillatory behavior of the WF as a
function of the radius. The experimental distribution of the
work functions with radius presents a nontrivial left-right
asymmetry around the peak value that is well reproduced by
the model. This is the main achievement of our work. We
also extend the calculations to study the work function for
radii smaller than 5 Å. Let us remark that this region, called
class II SWNT, has been investigated before for armchair,
quasimetal, and semiconducting SWNTs with first-principles
calculations.15 Our model predicts a WF linear with 1 /R for
radii smaller than 5 Å.

The driven physics of the model are the delocalized elec-
trons, the pairwise interaction, the constrained geometry, and
due to that the Van Hove singularities �VHSs�. As pointed
out in Ref. 16 according to theoretical studies,17 semicon-
ducting �or metallic� SWNTs of similar diameters have a
similar number of VHS near the Fermi level, independent of
chiral angle. In this particular, with our model we obtain for
a fixed diameter D an analytical relation for the energy sepa-
ration between two consecutive peaks in the density of states
�coming from VHS� as a function of the Fermi energy, show-
ing a 1 /D2 scaling. We will present results for the work
function as a function of radius and Fermi energy.

We also study the zero-temperature thermodynamics of
the problem. The pressure is obtained from the mean-field
energy-momentum tensor as well as from the grand-
canonical potential to verify the thermodynamical consis-
tency. The behavior of the pressure as a function of the nano-
tube radius will be shown as well.

The work is organized as follows. In Sec. II, we present
the model and the Hartree-Fock solution of the ground-state
properties of the many-fermion system. We also provide a
discussion of the model and its limitations in the perspective
of the application to the many-electron system on the nano-
tube surface. In Sec. III, we present our study of the elec-

tronic properties of nanotubes with the model. In Sec. IV, we
give our conclusions.

II. MODEL

Our aim in the following is to discuss a nonrelativistic
quantum-field-theory �NRQFT� version of the well-known
Walecka model,18 already intensively studied in the context
of relativistic nuclear matter. The NRQFT model for the
electrons on the nanotube surface will be solved in the
Hartree-Fock approximation. It is worthwhile to note that the
Euler-Lagrange equation of motion for the fermion field op-
erator, for the chosen nonrelativistic model Lagrangian, is
given by the time-dependent Schrödinger equation with a
nonlinear term, which also corresponds to the Heisenberg
equation of motion.

A. Field theory formalism

We start with the following Lagrangian:

L =
i

2
���̇ −

i

2
�̇�� −

1

2m
� �� · �� − V���,�� , �1�

in which �=1 and �̇ indicates time derivative. By taking �
and �� as independent fields, the Euler-Lagrange equation
furnishes

�L
���

−
�

�t

�L
��� − �

�L
����

= 0, �2�

which leads to

−
1

2m
�2� +

�V

���
= i�̇ . �3�

The conjugate momenta are

� =
�L

��̇
=

i

2
��, �� =

�L

��̇�
= −

i

2
� . �4�

From the above equations, the Hamiltonian density, H=��̇
+����−L, reads

H =
1

2m
� �� · �� + V���,�� , �5�

which also can be obtained through the zero component of
the energy-momentum tensor,

T�� =
�L

����
��� + ����

�L
�����

− g��L . �6�

For a uniform system in equilibrium at rest, this tensor ac-
quires the form

T�� = �P + E�u�u� − Pg��, �7�

where P is the pressure, E is the energy density, and u� is the
four velocity of the fluid. As one can see, T00 is the same as
the Hamiltonian density and Tii= P.

In this paper, we present calculations with a Hermitian
point-coupling interaction, V��� ,��= �

2 ���r���4, but the proce-
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dure could be extended to a more general interaction as, for
instance,

V���,�� =
1

2
� dr�� ���r�����r�� �v�r�� − r����r�� ���r�� , �8�

where v�r�� being a local two-body potential. The quantiza-
tion of this model for fermions amounts to impose anticom-
mutation rules for the field operator acting on the Fock
space, i.e.,

��s��r�
� �,�s

†�r��� = �s�s��r�� − r��, ��s��r�
� �,�s�r��� = 0, �9�

where the subindex s indicates the spin state. The Hamil-
tonian operator reads

H = �
spin
� dr�� 1

2m
� �s

†�r�� · ��s�r�� +
1

2
� dr�� �s1�

† �r���s2�
† �r�� �

�	s1�s2��v�r�� − r���s1s2
�s2
�r�� ��s1

�r��� �10�

for a general local two-body potential depending also on the

spin state of the particles, with matrix elements 	s1�s2��v�r��
−r���s1s2
. In the present model, we assume s-wave contact
interaction in singlet spin states, with matrix element

	s1�s2��v�r�� − r���s1s2
 =
�

2
	s1�s2��00
��r�� − r��	00�s1s2
 ,

�11�

where 	s1s2 �SM
 is the Clebsh-Gordan coefficient.

B. Mean-field approximation

The Hartree-Fock variational equations are used to evalu-
ate the wave function of the ground state of the Fermi gas on
the nanotube surface. The matrix element of the Hamiltonian
in the Slater determinant state is denoted as 	H
= 	K
+ 	V
,
with K and V being, respectively, the kinetic and potential-
energy operators. The matrix element of the kinetic-energy
one-body operator is

	K
 = −
1

2m
�
	
� dr�	s

��r���2	s�r�� , �12�

and the mean value, or matrix element, of the potential en-
ergy for the two-body contact interaction in the singlet state
is

	V
 = ��
	

� dr��	s�r���2�
−s�r���2. �13�

The stationary point of the variation in the functional

F�	 = 	H
 − �
	

�	� dr��	s�r���2 �14�

gives the HF eigenvalue equation for the single-particle
states

−
1

2m
�2	s�r�� + 2��




�
−s�r���2	s�r�� = �		s�r�� . �15�

In Eqs. �12�–�15� above, 	s�r�� and 
s�r�� are single-particle
state wave functions. The single-particle energy correspond-
ing to 	s�r�� is �	. The subindex s indicates the spin state.

In the nanotube geometry the fermions are constrained to
move on the cylindrical surface. The appropriate coordinates
are the position along the nanotube symmetry axis �z� and
the angle in the transverse plane ���. The normalized plane-
wave solution of the HF equation in a spin state  with
periodic boundary condition in � is

	s�r�� =
�,s

��A�
eikzzein�, �16�

with A=2�RL, where R and L are, respectively, the radius
and length of the nanotube. The integer n runs from −� to
+�. The single-particle energies are given by

�k =
kz

2

2m
+

n2

2mR2 + � , �17�

where fermion surface density is =N /A, with the number
of particles

N = �
s
� dr�	�s

†�r���s�r��
 = �


� dr��
s�r���2

= 2�
n

L

2�
� dkz��kF − k� , �18�

obtained for each given Fermi momentum kF. The wave
number is k=�kz

2+ �n /R�2. We are assuming a simple Fermi
surface which embodies isotropy when the nanotube radius
goes toward infinite, and the planar geometry is recovered.

The number of particles is given by

N =
2L

�
�

�n��nmax

�kF
2 −

n2

R2 , �19�

where nmax is the highest integer smaller than kFR. The den-
sity of states for a single-particle energy is

�N

��k
=

2L

�

�

��k
�

�n��nmax,k

�2m�k −
n2

R2 − �

=
2L

�
�

�n��nmax,k

m�k

�2m�k −
n2

R2 − �

, �20�

where nmax,k is the largest integer smaller than �2m�k−�R.
The kinetic part of the Hamiltonian reads

	K
 =
L

�
�

n
� dkz� kz

2

2m
+

n2

2mR2���kF − k� . �21�

By performing the integration, the kinetic energy becomes
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	K
 =
L

�
�

�n��nmax

1

3m
�kF

2 + 2
n2

R2��kF
2 −

n2

R2 . �22�

Substituting the single-particle states in the expression for
	V
, one has

	V
 = �
2

A� L

2�
�

n
� dkz��kF − k��2

=
�

2
N . �23�

At this point we have had the total energy

E = 	H
 = 	K
 + 	V
 . �24�

The total energy per particle e and the density energy E are
so defined,

e =
E

N
, E =

E

A
. �25�

The extremum of the surface energy density appears for a
certain value of kF=kF

o that has a vanishing derivative, which
is written is terms of the dependence on kF as

�

�kF
�� 	K


N
+

	V

N
��

kF=kF
o

= 0. �26�

This condition can be rewritten as

� = �o =
2A

No
� 	K
o

No
−

kF
o2

2m
� , �27�

where 	K
o and No stand for 	K
 and N at the point kF=kF
o . If

one imposes the validity of Eq. �27�, � becomes a function of
R. In the specific examples of nanotubes that will be dis-
cussed in Sec. III and for the parameters used for realistic
cases, the N-electron system does not saturate. However, the
value of � obtained from Eq. �27� is not far from our param-
etrization of SWNTs. Let us remark that the kinetic and in-
teraction energies become competitive in this case.

C. Thermodynamical approach

We begin the analysis of the thermodynamical properties
of the model by obtaining the pressure from the energy-
momentum tensor,

Tii =
�L

��i�
�i� + �i�

†
�L

��i�
† + L . �28�

We evaluate the matrix element of the energy-momentum
operator, Tii, in the Heisenberg picture using the Lagrangian
density L from Eq. �1�. The time dependence of the field
operator ��r� , t� is given by e−i�kt, obtained in the HF approxi-
mation, where �k is the single-particle energy. Then we get
that

	Tzz
 = 	L
 −
1

m
	�z�

†�z�
 �29�

and

	T��
 = 	L
 −
1

mR2 	���†���
 , �30�

where the matrix element of the Lagrangian operator in the
Slater determinant state is given by

	L
 = � i

2
�†�̇ −

i

2
�̇†�� − 	H


=
L

�A
�

n
� dkz�k��kF − k� − 	H
 = −

�

2
2. �31�

After some straightforward manipulations, the matrix el-
ement of the spatial components of the energy-momentum
tensor operator can be given by the simplified expressions,

	Tzz
 =
�

2
2 +

2

3

L

�mA
�

�n��nmax

�kF
2 −

n2

R2�3/2
�32�

and

	T��
 =
�

2
2 +

2L

�mAR2 �
�n��nmax

n2�kF
2 −

n2

R2�1/2
. �33�

If one wants to study in a more general way the consistency
of the model, the above quantities will help in checking the
results derived with different thermodynamical ensembles.
The components of the energy-momentum tensor are associ-
ated to the system pressure P as we will see in the following.
Let us first define and calculate the chemical potential by
using Eqs. �19� and �24�,

� =
�E

�N
=

�E/�kF

�N/�kF
= EF + � . �34�

It corresponds to the energy needed to remove or to add a
particle to the many-body system. The above quantity can be
related to the pressure if one proceeds rewriting the chemical
potential as follows:

�E

�N
=

�E
�

=
��E/A�
��N/A�

= −
A

N
�−

E

A
+

�E

�A
� = −

1


�− E +

�E

�A
� .

�35�

The usual definition of P=−�E /�A for a fixed number of
particles leads to

− P = E − � . �36�

This general thermodynamical relation when applied for our
model gives

P = �EF + �� −
	K

A

−
	V

A

= EF −
	K

A

+
1

2
�2.

�37�

After careful manipulation of terms and by introducing Eqs.
�19�, �22�, and �23� into Eq. �37� one gets exactly Tzz, i.e., the
energy-momentum tensor component presented in Eq. �32�.
This checks the thermodynamical consistency of our field
theoretical derivation of the pressure. As a further remark,
the condition of zero pressure P=Tzz=0, i.e., hydrostatic
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equilibrium, leads to the same extreme �=�o, obtained in
Eq. �27�.

We call attention here that T�� is related to the change in
the total energy with the radius. As the radius increases a
planar structure is approached and T�� tends to Tzz. This con-
jecture can be seen analytically if we take the limit to large
values of R in the last terms of Eqs. �32� and �33�. The
explicit sum of Eq. �32� gives nmaxkF while that for Eq. �33�
becomes nmax�nmax+1��2nmax+1� /6. Considering nmax=kFR,
the asymptotic results of Eqs. �32� and �33� are Tzz=T��

=�2 /2+ �2LR /3�mA�kF
4 .

The inclusion of temperature in the model is also straight-
forward since basically the � functions that we have em-
ployed in our derivation are, in fact, the zero-temperature
limit of the finite-temperature Fermi distribution. Once the
temperature is included, ET and N will become temperature
dependent and a grand-canonical thermodynamical potential
may be defined as −PA=ET−TS−�N, where S is the en-
tropy.

D. Work function

In the following, we introduce the work-function defini-
tion within our model. As will be discussed in Sec. II D, in
our model the two-body effective interaction, �, is sup-
posed to include all kind of correlations contributing to the
energy functional. In this approximation, � is the well
depth while EF denotes kinetic energy of the electron in the
Fermi level. For metals, it is a correct association. From the
Wigner-Bardeen definition19 the work function is given by
the energy difference between a lattice with equal number of
ions and electrons, and the same lattice with a removed elec-
tron. It is assumed, therefore, that the lowest electronic state
is completely filled so that the electron is removed from the
highest energy state of the neutral metal. However, in the
case of insulator or semiconducting materials, one has to
take into account the gap energy between valence and con-
duction bands. The Fermi level is, in general, not occupied
by electrons and thus it acquires a more abstract meaning.

Although the proposed nearly-free-electron model does
not include such effects in its present form, they may be
extracted from other models. For instance, tight-binding em-
pirical prediction for the band gap reads Eg= �t�ac−c /d, where
d=2R is related to the chiral numbers d=a�n2+m2+nm. By
choosing that, the Fermi-level should be redefined by includ-
ing the midgap energy as a function of the nanotube radius
R. For qualitative aims of the present work and considering
that for large radii this contribution is actually too small; in
what follows the work-function definition will not include
the band-gap energy.

Therefore, in our model, the WF is defined as

WF = EF + � , �38�

with EF being the electron kinetic energy at the top of the
Fermi sea, and not at midgap, which is the usual for semi-
conducting nanotubes.20 This definition turns out to be the
same of the chemical potential �Eq. �34�, which is negative
for bound systems. The work function defined above, in
agreement with Eqs. �36� and �37�, can as well be written as

WF = � =
E
N

+ P
A

N
, �39�

with its modulus interpreted as the energy necessary to re-
move a particle from the system that needs to overcome the
bulk energy per particle and a pressure term, interpreted as a
surface-potential step. Hereafter, when we apply the model
we will present the magnitude of WF. As a remark, Eq. �39�
is identical to our previous Eq. �36�, which is the content of
the Hugenholtz–Van Hove theorem.21

The identification of the surface-potential step as the pres-
sure term is based on a recent work.22 It pointed out that the
difference between the chemical potential, interpreted as the
total energy necessary to add or remove a particle from the
many-electron system, and the energy per particle is exactly
the electrostatic potential step at the surface. In that work, the
potential step from the surface dipole was clearly related to
the pressure, making our interpretation of the work function
consistent.

Last but not least, some words about the Fermi energy
level in our model are in order. The value set for this level is
usually arbitrary and is chosen by convenience, although it is
not unrelated to the band-structure energies. In Sec. III, when
we apply our model, EF will become a parameter in order
that our work function fits the experimental data. In this case,
Eq. �38� can be interpreted as WF= �EF−Vref�+ ��+Vref�,
where the reference energy, Vref, varies for different nano-
tubes. For practical purposes, however, we do not need to
know the explicit value of Vref since EF already parametrizes
the model. The limitations of our model will be thoroughly
discussed in Sec. II E. If we define a dimensionless param-
eter x=kFR, the work function can be cast in the following
form:

WF = EF�1 +
2m�

�2x
�

�n��nmax

�1 −
n2

x2� . �40�

This form is convenient to analyze the case x=kFR�1 and
the asymptotic limit x=kFR�1. In the last case, the x depen-
dence in Eq. �40� goes to � /2, giving for WF and 
=N / �2�RL� the following asymptotic behavior:

lim
x→�

WF = EF�1 +
mc2�

���c�2� , �41�

and electron surface density tends to

lim
x→�

 �Å−2� =
kF

2

2�
=

mc2

���c�2EF = 0.042EF �eV� , �42�

where we have shown explicitly the factors � and the light
speed c. Note that �c=1973 eV Å and for electrons mc2

=0.511�106 eV. So, kF=�2mc2EF / ��c�2=0.51�EF �eV� in
units of Å−1. Therefore, x=0.51�EF �eV�R �Å�. The
asymptotic expression for the work function �Eq. �41� al-
lows an asymptotic strength parameter,
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��EF� =
���c�2

mc2 �WF

EF
- 1� , �43�

which may become useful even for x=kFR for values not
necessarily too large, provided the work function has a small
radial dependence.14 Indeed, we will see in our applications
that to have a good approximation between the exact expres-
sion for WF and  to the asymptotic expressions given by
Eqs. �41� and �42�, x�5, should be enough. From Eq. �42�
we also see in a clear form how the Fermi level modulates
the carrier concentration.

E. Some considerations about the model and its limitations

At this point is important to put the model and our ap-
proximations in the perspective of the complexity of the
many-electron system on the nanotube surface. In order to
apply model Lagrangian �1� in that case, we use an effective
contact two-electron interaction depending on a strength �.
We stress that effective two-body potential �8� should be
distinguished from the bare repulsive Coulomb potential, as
it parametrizes all kind of correlations that contributes to the
energy functional. Seen in this way, the correlations are in-
cluded, albeit in a simplified form, in what it is formally
presented as the HF ground-state energies and densities in a
mean-field calculation �see Ref. 23�. However, it is hard to
distinguish the contribution of a particular correlation to the
energy functional. The long-range many-body correlations
with contributions to the energy functional that are in the
form of powers and gradients of  could be included in our
model by a density dependent �, and by introducing in La-
grangian density �1� one-body terms with higher derivatives
of the fermion field. Indeed in the nuclear physics context the
Skyrme functional, in the spirit of an effective model, in-
cludes several of these terms with adjustable parameters �see
discussion in Ref. 23�. In that respect the Hartree-Fock ap-
proximation of the single-particle energy of the many-
electron system with the point-coupling interaction can be
compared to the first-order contribution of the surface den-
sity in a density-functional theory.11 We have to point that
when fitting the model parameters to the work function of
graphene, we cannot separate a priori the HF part from cor-
relation contributions. Thus, our model parameters as ob-
tained from the fitting procedure to the graphene work func-
tion brings to the electron properties on the nanotube surface
correlations beyond the HF calculation.

In our model the strength of contact interaction �11�
should be in general a functional of the density itself. Such
dependency parametrizes the contribution of correlations to
the energy functional, which also means a nonconstant
strength for SWCNT with different radius. We will assume
that the dependency is small for large nanotube radius as we
will fit the work function of the graphene sheet. For small
nanotube radius the effective interaction increases, an effect
that is missing in our model. As we will see by the compari-
son with the experimental data of the work function for
D�10 Å, this effect can be ignored, while for small radius
nanotubes the model deviates from ab initio calculations as
shown in Sec. III.

The SWCNT is assumed to be neutral, hence, the positive
nucleus charge density is equal in magnitude to the electron
charge density, and thus, they do not contribute to the energy
functional remaining only the effective two-electron poten-
tial as the dominant interaction in the electron binding. This
assumption also suggests that the effect of the lattice struc-
ture in the dispersion relation of the electron is small, al-
though it is know that for metallic SWCNT the energy de-
pends linearly on the momentum especially near the “K”
points. However, on these particular points, it is important to
remind the reader that the linearity in the dispersion relation
corresponds to the tangent to the free dispersion relation.

The involucre of the dispersion relation is approximately
given by the free kinetic energy, as indicated by the overall
neutrality of the nanotube surface. Therefore, the Fermi mo-
mentum of last filled level can be extracted by the kinetic
energy of the last filled level. Indeed, in the comparison with
the experimental data for the work function as we will show,
it is required the relation between the Fermi kinetic energy
and Fermi momentum. It is also reasonable to expect that the
error in the evaluation of the Fermi momentum from the
value of the free kinetic energy should be small. Moreover,
the maximum electron kinetic energy that is limited by the
Fermi wavelength gives a finite width for the filled bands for
momentum along the nanotube symmetry axis and for all
one-dimensional �1D� subbands originated by wrapping the
graphene sheet. An improvement of the model should in-
clude the lattice structure in the evaluation of the electron
dispersion relation, which will be left for a future work.

III. RESULTS AND DISCUSSION

The model we have presented is a very simple one. Once
the radius R and the length L of the cylinder are given, the
number of fermions N is obtained from Eq. �19� as a function
of the Fermi energy EF=kF

2 /2m. Let us remark that N as well
as the surface density =N /2�RL do not depend on fermion
interaction details. Both are basically controlled by the cyl-
inder radius R and the Fermi energy surface EF. Nevertheless
as we will see, a substantial physics content of very small
quantum systems is built in their kinematics and geometry
themselves. Therefore, R plays a crucial role in the quantum
behavior of the fermions on the surface once the maximum
value of the quantum number n is limited by x=kFR �see Eq.
�19�. This property is reflected in the oscillatory behavior of
the kinetic energy as a function of R or EF. Also the jump
from n to n+1 causes the Van Hove singularities in the den-
sity of states near the Fermi surface �see Eq. �20�. The den-
sity of states �Eq. �20�, the total energy per particle e �Eq.
�25�, the pressure �Eq. �37�, and the work function �Eq.
�38� depend on R, EF, and �. The strength of the interaction,
�, is a free parameter to be eliminated in favor of some
specific measured observable for a known Fermi energy. To
describe the properties of carbon SWNTs we fit � to repro-
duce a work function around 4.8 eV with small fluctuations
for a large range of radius values.14 This condition con-
straints only the pair of values �� ,EF�, i.e., � appears as a
function of EF for a given work function.

Here we will discuss our parametrization procedure in
more detail. Let us first clarify that different �� ,EF� sets may
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lead to the same expected work function of about �4.8 eV.
This can be easily seen from Eq. �40� or its asymptotic form
�Eq. �27�. By knowing this, we have chosen an optimal
�� ,EF� set which takes into account not only the asymptotic
value of the experimental work-function data but also the
oscillations around the average.

By analyzing 93 SWNTs widely distributed in a range of
radius between 5–15 Å, Suzuki et al.14 measured the radial
dependence of the work function. They classify the nano-
tubes according to the WF values around the average in the
intervals �−0.05 eV, +0.05 eV, �+0.05 eV, +0.15 eV,
�−0.05 eV,−0.15 eV, �−0.15 eV,−0.25 eV, �+0.15 eV,
+0.25 eV, �−0.25 eV,−0.35 eV, and �+0.25 eV,
+0.35 eV. The data were presented as a histogram for the
number of nanotubes within each interval of value of the
work function. To compare the results of our model with the
experimental data, we choose an interval of values of R and
attribute equal probability for nanotubes having a radius in
the whole range of radii between 5 and 15 Å. We set the grid
points on R to allow the calculation of thousand WFs in that
interval of values. With this, we obtain the average value of
the work function for 5�R�15 Å. To calculate the fluctua-
tion of the WF around the mean value, we count the number
of nanotubes having a variation in the WF with respect to the
mean value inside the intervals used to classify the experi-
mental data.

In the numerical evaluations we use L=1 000 Å. An
optimal set parameter was obtained for EF=1.24 eV and �
=−116.61 eV Å2. Our results, for thousand equally spaced
radius from R=5 Å to R=15 Å and normalized to 93 events
are presented by the histogram of Fig. 1. The model repro-
duces nicely the experimental data. This shows that the
model is able to be fine tuned to the details of the histogram.

How we have obtained this fitting deserves a comment as
follows. The experimental work-function data show small
radial fluctuations. From theoretical quantum-size effect pre-
diction of the model—see, for instance, Eqs. �19�, �20�, and
�40�—the amplitude of the oscillation of the WF around the

average decreases as the radius increases, i.e., nmax, becomes
higher. Therefore, the more the radius increases, the less the
work function fluctuates from its average value. In this per-
spective, the average work-function value goes fast to the
asymptotic result. Indeed, our � has been obtained from the
asymptotic expression �Eq. �43�, with WF=4.8 eV and EF
=1.24 eV. Note here that the change of EF=1.24 eV to an-
other value does not modify the asymptotic or the average
work-function value taken as WF=4.8 eV but only the fluc-
tuations around this value.

That is why we call our choice or EF=1.24 eV as optimal
since it reproduces nicely the oscillation found for the ex-
perimental work-function data. However, we should stress
that the experimental distribution of the work functions with
radius shows a nontrivial left-right asymmetry around the
peak value that is well described by the model once the peak
value of the histogram and graphene work function are fitted.
This is the main achievement of our work. In Fig. 2 we can
see the work-function dependence on the radius as predicted
by the model with EF=1.24 eV.

Still discussing Figs. 1 and 2 we point out the average
value of WF=4.798 eV to be compared with WF=4.8 eV,
the graphene work function asymptotic one. To get the aver-
age value, the Fermi shells controlled by nmax runs from 3 to
8. The model gives for the quasifree electrons a surface den-
sity of �0.05 Å2.

In Fig. 3 we show the dependence of the work function
with the Fermi energy for a fixed radius, R=5 Å. This figure
also shows that the work function oscillates around the av-
erage and the asymptotic value. Note that nmax is the quan-
tum number of the last shell with electrons �see, for instance,
Eq. �40�, and we recall that it is given by the largest integer
smaller than kFR=x=0.51�EF �eV�R �Å�. The jump from
one shell to the next one originates the oscillating pattern
shown in Figs. 1 and 2.

Now, we will show the behavior of other physical quan-
tities derived from the model with the previous parametriza-
tion. In Fig. 4 we show the density of states at the Fermi
surface given by Eq. �20� as a function of the nanotube ra-
dius. If we analyze more carefully the oscillations we find a
defined period and a common 1 /R decaying rate. Such be-
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havior has already been theoretically studied in Ref. 24 for
metallic carbon nanotubes in which the Van Hove singulari-
ties were interpreted in analogy to the de Haas–van Alphen
effect. In that study, using Green’s-function approach within
a tight-binding model, they showed the appearance of radial
oscillations in the electronic properties of the nanotube.

The peaks of the density of states in Fig. 4 are associated
to the Van Hove singularities. From our model, it is also
possible to derive an analytical expression for the radius at
which the density of state peaks �see Eq. �20�,

Rk =
��c�k

�2mc2�EF − ��1/2 =
��c�k

�2mc2�2EF − WF�1/2 , �44�

where k=1,2 ,3 , . . . stands for the available shells. This ex-
pression relates the Van Hove singularity at a given nanotube
radius with the Fermi energy and the work function.

The qualitative features of the density of states seen in our
Fig. 4 and those in Ref. 24 are quite similar as they are
dominated by the jump from one filled shell to the next one.
As we see, the density of states at the Fermi energy is very

sensitive to the radius of the cylinder due to the dependence
with nmax �the largest integer smaller than kFR�. Therefore,
when R is too small, only few quantum states in Fermi sea
are filled. In the case of Fig. 4, nmax changes from 1 to 5
when R goes from 2 to 10 Å. In the extreme case, decreas-
ing further the radius to R�2 Å, nmax=0, the system be-
comes a one-dimensional nanowire. In the opposite limit,
when R becomes very large, not shown in Fig. 4, the cylin-
drical surface becomes a planar structure of the graphene
sheet.25

In Fig. 5 it is shown the density of states as a function of
the Fermi energy for R=5 Å. Again, oscillations occur. In
our model, the energy separation between two consecutive
peaks in the density of states as a function of the Fermi
energy, for a fixed radius and �, from Eq. �20�, reads

�E�j� = E�j� − E�j−1� =
��c�2j

mc2R2 −
1

2mR2

+
�

�R2� �
�n��j−1

�j2 − n2 − �
�n��j−2

��j − 1�2 − n2� ,

�45�

where E�j�= ��kF
�j��2 /2m+��j�. For large values of integer j

the above equation can be simplified,

�E�j� �
��c�2j

mc2R2 +
��2j�1/2

�2R2 , �46�

showing a scaling of �E�j� with 1 /R2.
In the following we present the thermodynamical proper-

ties of the electronic system on the nanotube surface. In Fig.
6 we show the total energy per particle �e� given by Eq. �25�.
The oscillation of the total energy and other quantities as a
function of R and/or EF is expected to happen as a conse-
quence of the oscillation in the density of states. Indeed, we
see an oscillatory behavior of the energy per particle by vary-
ing the cylinder radius. The same also happens if we use the
parameters of Fig. 3 to calculate the energy per particle as a
function of the Fermi energy.
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FIG. 3. Work function as a function of Fermi energy for R
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A new outcome of our model is shown in Fig. 7, where
we present results for the energy-momentum tensor compo-
nents Tzz and T��. As we have analytically shown in the
previous section, Tzz is equal to the thermodynamic pressure
given by Eq. �37�. This plot exhibits how T�� approaches Tzz

as the radius increases according to what we have analyti-
cally shown before. Here, we notice how fast both T�� and
Tzz approach to each other already for radii of few ang-
stroms. In the limit of large radius, i.e., toward a flat
graphene piece, the pressure could be actually given by p
= �T��+Tzz� /2, which is broken, at small radius, by the cy-
lindrical symmetry.

Let us stress that despite our good fit of the work function
seen in Fig. 1, the model is solved in a mean-field approxi-
mation and does not intend to be realistic in predicting prop-
erties for nanotubes for which a very rich band structure
appears. Nevertheless, we expect that under the limitation of
a nearly-free-electron model the right qualitative physics of
the system is addressed. For a large set of parameters �� ,EF�
and R�5 Å we have a small radial dependence of the work
function, as verified experimentally.14 This robust property is
deeply built into our effective model.

Before we close this section it is necessary to remark that
a first-principles calculation of SWNT work function15 was
performed for class I �R�5 Å� and class II �R�5 Å� nano-
tubes. In Fig. 8 we compare our results for the WF as a
function of 1 /D with calculations from Ref. 15 for armchair,
quasimetal, and semiconducting SWNT. For class I, they
found that the work function appears distributed within a
narrow band of �0.1 eV with no significant chirality or ra-
dius dependence, while the experimental data of Suzuki et al.
shows a larger band �see Fig. 1�. In class II, those results for
the work function show a substantial change depending on
armchair or zigzag structure. Our model, without further re-
finements, which is left for a future work, does not distin-
guish the band details rather than those contained in the tube
radius and Fermi energy. For the class I nanotubes the chiral-
ity seems not to be crucial for obtaining the work function
since it appears in a narrow band around the graphene work
function and also supported by the results of our model, as
shown in Fig. 1. However, this is not the case for class II
nanotubes, for which the work function results show a large
amplitude oscillation also corroborated qualitatively by our
model.

In Fig. 8 �see also Fig. 2� we observe a noticeable oscil-
lation of the work function for D�10 Å. This is the region
in which nmax�2. In particular, in angstrom units, when 8
�D�10, 4�D�8, and D�4, nmax=2,1 ,0, respectively.
The case nmax=0 is particularly interesting once the work
function �see Eq. �40� becomes

WF = EF�1 +
2mc2�

��c�2�2x
� , �47�

which increases linearly with 1 /x=1 / �kFR� for fixed EF.
Substituting in Eq. �47� the value of � by the asymptotic
��EF�, given by Eq. �43�, we can connect the results of
WF�x�1� to those of WF�x�1�,

WF�x � 1� = EF�1 +
4

kF�
�WF�x � 1�

EF
− 1� 1

D
� , �48�

which raises with 1 /D, clearly seen in Fig. 8 for D smaller
than about 4 Å.
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As we can see from Fig. 8, our model deviates strongly
from the results in Ref. 15 for the semiconductor case where
D�4 Å. Our model is parametrized to reproduce the aver-
age WF=4.8 eV for D�10 Å with EF=1.24 eV. It is ex-
pected that our nearly-free-electron effective model fails to
reproduce the first-principles calculations of the work func-
tion for semiconducting nanotubes. Our model has a fixed
kF; it misses the rich band structure and chirality-dependent
properties, which seems to be crucial for the work function at
small radius. Nevertheless, for class II nanotubes, with larger
radius, our model was able to account for the left-right asym-
metry seen in the histogram that presents the number of
nanotubes with deviations of the WF from the average within
given intervals as shown in Fig. 1. This fine tune result of the
model is a direct consequence of Eq. �38� for the WF ob-
tained in the Hartree-Fock approximation to the single-
particle energy of the many-electron system with the point-
coupling interaction. Therefore, we believe that for large
nanotube radius the particular expression of the WF derived
in this work goes beyond the limitations of the model. This
expression could come from a first-order contribution of the
surface density to the single-particle energy within DFT.
Moreover, within DFT, the WF is the single-particle energy
of the highest occupied level with respect to the vacuum.12

IV. CONCLUSIONS

We have studied the properties of an interacting
N-fermion system on a cylindrical surface focusing in the
quantum-mechanical size effects of the ground-state observ-
ables. Our first step was to construct a model based on non-
relativistic quantum field theory from which one can provide
a consistent thermodynamical approach. We have done this
by starting from a Lagrangian density which gives the energy
density and ultimates in a nonrelativistic Hamiltonian opera-
tor. To quantize the model we have chosen an effective two-
fermion point-coupling interaction, which in coordinate
space is given in terms of a � function in the relative distance
between two fermions. However, the model can be imple-
mented with a more general local interaction �see Eq. �8�.
To obtain the properties of the ground state, we use the well-
known Hartree-Fock approximation, which made possible an
analytic treatment of the problem. Here, it is interesting to
remark that the single-particle energy in the Hartree-Fock
approach for the point-coupling two-carrier interaction
turned out to exhibit a linear surface density dependence
compatible with a first-order contribution of a density-
functional theory.11 In this way, higher order terms that could
appear in DFT could be simulated by including many-body
point-coupling interactions treated in mean-field
approximation.26

In addition, the thermodynamical properties were derived
and the density of states, total energy, chemical potential, and
the pressure were defined properly. Within this model,
quantum-size effects can be understood as a consequence of
filling states in the Fermi sea in which a clear dependence on
the Fermi momentum and the nanotube radius naturally
arises �see, e.g., Eq. �19�. The model provides an interesting
example to investigate the interplay between geometry and

the quantum mechanics of interacting many-fermions sys-
tems. From our knowledge such a kind of example was not
discussed in so many details as we have done here.

As an application, we used the model to study some elec-
tronic properties of nanotubes with metallic behavior. When
the electrons are well localized in the carbon sites, one has,
for instance, the validity of the widely used tight-binding
approximation to model the electronic properties of the
nanotube.6 It is well known that this approximation is
strongly based on the localization of the valence electrons at
their atomic cores. The present model is in some sense
complementary to that approximation since it describes a
system of nearly-free electrons in long conducting nano-
tubes, where one expects that the tight-binding approxima-
tion may not work well.

We have calculated the density of states for fixed Fermi
momentum as a function of the radius as well as for fixed
radius as a function of the Fermi energy. In the first case, we
found the values of the radius for which a Van Hove singu-
larity occurs in terms of EF and WF �see Eq. �44�. In the
second case, when the radius is fixed we found an analytical
relation for the separation between the Fermi energies of two
consecutive peaks due to Van Hove singularities in the den-
sity of states. From this relation we can see in a very clear
form the kinematical and the dynamical contributions, both
exhibiting a geometric scaling with 1 /R2 �see Eq. �46�.

Our model has only one free parameter � besides the
Fermi energy. In our applications we have eliminated � in
favor of the experimental work function of the graphene
sheet. We have found different �� ,EF� for same the experi-
mental work function. Indeed, in our model, the Fermi level
modulates the electric carrier concentration as well as the
values of �, compatible to the experimental WF. The smaller
is the Fermi energy the smaller is the charge-carrier concen-
tration , which is � independent. Here we remark that even
for quite different pair of values �� ,EF� fitting the graphene
sheet WF, the variation in WF as a function of the nanotube
radius is small for R�5 Å.

We studied the work function �WF� as a function of the
radius with our model parametrized to reproduce the experi-
mental WF average data around 4.8 eV from 0.5 nm to 1.5
nm.14 The experimental data shows a WF with a small sen-
sitivity to either the radius or chirality in this region. Indeed,
as discussed in Sec. III, we have found a family of different
values of � and EF fulfilling the constraint of small radius
dependence. Following Ref. 14 we have also performed a
more detailed study of the fluctuations of the WF around the
mean value. Our model is able to account for the nontrivial
left-right asymmetry of the histogram, which shows the num-
ber of nanotubes with deviations of the WF from the average
within given intervals �see Fig. 1�. This detailed fit of the
model is a direct consequence of the simple expression of the
WF as the Fermi energy plus the potential energy �propor-
tional to the surface density� �Eq. �38�. This relation was
obtained in the Hartree-Fock approximation to the single-
particle energy of the many-electron system with the point-
coupling two-body interaction. Therefore, for large nanotube
radius the simple form of the WF derived here goes beyond
the limitations of the model. It could correspond to a first-
order contribution of the surface density to the single-particle
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energy within DFT. However, the nearly-free-electron effec-
tive model fails to reproduce the first-principles calculations
of the work function for semiconducting nanotubes for ra-
dius below 5 Å. Our model has a fixed Fermi momentum
and misses the rich band and chirality structures, which
seems to be crucial for the work function at small radius. In
this region, the Fermi level of semiconducting SWNT is eas-
ily shifted by adsorbates or defects,27 and the semiconduct-
ing SWNT work function may be strongly dependent on the
Fermi-level position in the band gap.

Temperature effects were not studied in our model. Quali-
tatively, however, we can presume that its appearance will

favor the electron mobility, improving the nearly-free-
electron approximation on which our model is physically
based.
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